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Online Supervisor Synthesis for Partially
Observed Discrete-Event Systems

Joseph H. Prosser, Moshe Kam, and Harry G. Kwatny

Abstract—A partial information supervisor that generates a class of
closed controllable and observable sublanguages of a specified “legal”
language is presented. This supervisor has the following features: 1) it can
be implementedonline (i.e., the disabled event set need only be computed
once upon each event observation); 2) the computations of the disabled
event set can be performed inO(mn)O(mn)O(mn) worst case complexity, wherennn is
the number of states in the legal language generator andmmm is the number
of events; 3) an online supervisor presented previously by Heymann and
Lin (1993) is a special case of the new supervisor; and 4) all the languages
generated by the new supervisor contain the supremal closed controllable
and normal (supCCNsupCCNsupCCN ) sublanguage of the legal language (in fact, they
contain a language developed by Faet al.(1993) that was shown to contain
the supCCNsupCCNsupCCN sublanguage).

Index Terms—Discrete-event systems, online control, partial observa-
tion, supervisory control.

I. INTRODUCTION

The design of supervisors for partially observed discrete-event sys-
tems requires the properties oflanguage controllabilityandlanguage
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observability.It has been shown that if a languageK is a prefix-
closed sublanguage of the plant language, then a supervisor exists
such that the closed-loop language is equal toK if and only if K is
both controllable and observable.

When a specified closed-loop language is not both controllable
and observable, it is desired to approximate it in some sense by
a controllable and observable sublanguage (thereby ensuring that a
supervisor for the sublanguage can be realized.) Often, supervisors
are computed that generate a (controllable and observable) subset
of a specified “legal” languageL. Since many such sublanguages
can exist (and be incomparable in terms of set inclusion) it is of
interest to find them, classify them, and identify their properties.
Here, we assume that the legal languageL is closed and regular and
generate a new class of (not necessarily regular) closed controllable
and observable sublanguages ofL. This class of languages has, as
two of its members, languages that were previously proposed in [9]
and [11].

One of the most important properties of a potential closed-loop
language is the computational effort required for synthesis of the
corresponding supervisor. Until recently, the computational complex-
ity of synthesizing partial-information supervisors has limited their
practicality. For a nonregular closed-loop language, the number of
supervisor states is (in the worst case) infinite, even when both the
legal language and the plant language are regular. The reason is that
a generator for a nonregular language can have an infinite number
of states.

In [9], it was suggested that some of the complexity limitations
can be bypassed by anonline supervisor synthesis procedure. Rather
than computing the supervisora priori (i.e., determininga priori
which controllable events to disable for every possible sequence of
event observations) the disabled event set can sometimes be computed
online just after the occurrence of observed events. The only assump-
tion needed is that a minimum time-period elapse between event
occurrences in the system, and that this period be longer than the
online computation time. These limitations are reasonable in systems
whose events do not occur very frequently, or where computational
resources are plentiful.

The computational complexity of online synthesis procedures is
expressed in terms of their stepwise complexity, i.e., the number of
computations required each time an event is observed. Some existing
procedures (e.g., [9] and [11]) have been shown to have complexity
O(mn), wheren is the number of states in the generator of the legal
language andm is the number of events.

Potential closed-loop languages are also evaluated in terms of their
relative “size” when compared (in terms of set inclusion) to existing
sublanguages or classes of sublanguages. One of the first approaches
to finding a closed controllable and observable sublanguage uses
the property oflanguage normality[2]. Language normality implies
language observability, and normality (like controllability) is closed
under union. Hence there exists a supremal closed controllable and
normal sublanguage ofL, which we shall denotesupCCN(L).
Studies of normal sublanguages can be found in [3]–[7].

One common approach to supervisor synthesis has been used
to find closed controllable and observable sublanguages ofL that
contain the supremal closed controllable and normal sublanguage.
The process starts with a (nonempty) closed controllable (but not
necessarily observable) sublanguageK � L and usesK to generate
another closed controllable language that is also an observable
sublanguage ofK. This process was used to produce sublanguages
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in [8]–[11]. One such language we denote as
(K), a language
discovered independently by the authors of [8]–[10] which was shown
to satisfy supCCN(K) � 
(K). Under the assumption thatK
is regular, a language that contains
(K) was synthesized in [9]
and is denotedL(SM=G) whereSM is a supervisor for the plant
G. Another language that contains
(K) (and is incomparable to
L(SM=G) in the sense of set inclusion) was presented in [11]
and is denotedL(S3=G). Online techniques have been used to
synthesize supervisors for
(K) andL(SM=G) in [9] and [12], and
for L(S3=G) in [11]. All of these techniques require the assumption
that K is closed, controllable, and regular.

The main result of the present study is a generalization of an
online supervisor synthesis procedure given in [9], producing a
classof closed controllable and observable sublanguages of a given
regular closed and controllable languageK � L. Each element of
the new class contains the language
(K) [which itself contains
supCCN(K)]. Under the assumption thatL is regular, if we
set K = L" (where L" is the supremal closed and controllable
sublanguage of the regular languageL) then every member of
the class also containssupCCN(L). Furthermore, the previously
proposed languagesL(SM=G) and L(S3=G) are members of the
class. This class of languages can contain nonregular languages.

The rest of this paper is organized as follows. Section II reviews
the relevant theory of supervisory control and describes the language

(K), whereK is an (arbitrary) regular closed controllable sublan-
guage ofL. In Section III we present the assumptions and the main
results of this paper. We present some examples in Section IV. The
proof of our main result is given in Appendix A.

II. PRELIMINARIES

The system to be controlled is modeled by a deterministic finite
automaton (DFA) or generatorG = (Q; �; �; q0), whereQ is a
set of states containing the initial stateq0, � is a nonempty set of
events such that the null event� 62 �, and� is a transition function
(a partial function) mapping� � Q into Q. The set�� is the set
of all strings made from concatenating any number of events in�,
defined as�� = f�g [ � [ �� [ � � �.

The plant’s transition function is extended in its domain over
�� � Q by assigning for allq 2 Q, �(�; q) := q, and�(s�; q) :=
�(�; �(s; q)) if it is defined. A language is any subset of��. A
languageL is said to beprefix-closedor just closedif every prefix
of every string inL is also a member ofL. The prefix-closure of a
languageL, denotedL, is the set of prefixes of every string inL.

Corresponding to the DFAG we define a languageL(G)
(called the plant language) to be the setL(G) := fsjs 2
�� ^ �(s; q0) is definedg. The languageL(G) is closed, and we
say that the plantG generatesL(G). If L � L(G) we say thatL is
a sublanguage ofL(G) or just thatL is a sublanguage.

We partition� into two subsets:�c, the set of controllable events,
and�uc = ���c, the set of uncontrollable events. Asupervisoris
a function: L(G)! 2� . Under the event disabling action of the
supervisor the plantG generates theclosed-loop languagethat is a
closed sublanguage ofL(G). The closed-loop language generated by
the supervisor acting on the plantG is denotedL(G; ), defined
constructively using: 1)� 2 L(G; ) and ii)

[s 2 L(G; ) ^ s� 2 L(G) ^ � 62 (s)], s� 2 L(G; ): (1)

If L(G; ) = L we say that the supervisor generatesL. From the
above definition ofL(G; ), it can be seen that the function need
not be defined for alls 2 L(G). It is sufficient to define it for all
s 2 N so long asL(G; ) � N � L(G). We call  a supervisor
as long as it is defined over a sufficient subset ofL(G) so that the
closed-loop language can be computed.

A prefix-closed languageL � L(G) is controllable if (8 s 2
L; � 2 �uc)[s� 2 L(G) ) s� 2 L]. If L is a closed sublanguage
of L(G) then a supervisor exists such thatL(G; ) = L if and only
if L is controllable [1]. Every closed languageL � L(G) contains a
supremal closed controllable sublanguage [14]. The supremal closed
controllable sublanguage ofL is denotedL".

A mask [5] is a functionM : � ! � [ f�g, where � 62 �
and M is defined for all� 2 �. The set� is another event
set, and events in� are calledobserved events.The maskM is
extended in its domain over strings by assigningM(�) := � and
(8 s 2 ��; � 2 �)M(s�) := M(s)M(�). The mask function is
extended in its domain over sets of events and sets of strings in the
natural way.

We define therestricted inverse mask functionM�1
P

as a map
M�1
P

: 2� ! 2P , where P is a restricted domain ofM . Let
(8� � ��)[M�1

P
(�) := fs 2 P jM(s) 2 �g]. The setM�1

�
(f�g)

is the set of events in� whose mask value is�. Similarly, the set
M�1

�
(flg) is the set of strings in�� whose mask value is equal to

l. Theunobservableevents, denoted��, are those whose mask value
is equal to�. These are given by�� =M�1

�
(f�g). For simplicity of

notation we sometimes omit parentheses and braces and writeM� for
M(�), ML(G) for M(L(G)), andM�1l for M�1

�
(flg) wherever

its meaning is clear from context.
A partial information supervisoris a functionM : ML(G) !

2� . The closed-loop language of a partial information supervisor
is computed by assigning(8 s 2 L(G))(s) := M (Ms) then
computingL(G; ) as in (1). The functionM actually need not
be defined for alll 2ML(G) but only on a sufficient subset so that
the closed-loop language can be computed. We shall always use the
subscriptM for partial information supervisors so we are permitted
to write L(G; M ).

A prefix-closed languageL � L(G) is observable(with respect
to M ) if

(8 s; s0 2 L; � 2 �)([Ms =Ms0 ^ s� 2 L ^ s0� 2 L(G)]

) s0� 2 L): (2)

A partial information supervisor that generates the prefix-closed
sublanguageL exists if and only if L is both controllable and
observable [2].

A property that found use in the synthesis of sublanguages of
a given language isnormality [15]. A prefix-closed languageL �
L(G) is normal (with respect toM ) if for all s 2 L(G) ands0 2 L,
Ms = Ms0 implies thats 2 L. If a closed sublanguage is normal,
then it is observable. Since normality is closed under union, for each
closed sublanguageL there exists a supremal closed controllable and
normal sublanguage ofL [2]. This language is denotedsupCCN(L).

If the languageK � L(G) is closed and controllable (and
nonempty), then there is a closed controllable and observable sub-
language ofK denoted
(K) that containssupCCN(K) [8]. We
now synthesize a partial information supervisor that generates
(K).
By assumption, there exists a supervisor such thatL(G; ) = K.
Let  be such a supervisor. Assume without loss of generality
that (8 s 2 K)(� 2 (s) ) s� 2 L(G)). In this case, we
have that(8 s 2 K)(s) = f� 2 �cjs� 2 L(G) � Kg. We
extend the domain of the function to sets of strings by assigning
(8P � K)(P ) :=

s2P
(s).

Now define(8 l 2MK)[
M(l) := (M�1
K

l)]. Thus
M(l) is the
union of (s) over all s 2 K that satisfyMs = l. We have that

(K) = L(G; 
M) [8]–[10].

III. A N ONLINE SUPERVISOR FOR ACLASS OF LEGAL SUBLANGUAGES

We assume that the legal sublanguageL is closed and regular. We
develop a procedure for generating closed controllable and observable
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(but not necessarily regular) sublanguages ofL. We assume the
existence of some nonempty regular closed controllable sublanguage
of L, which we denoteK. Then K and 
(K) are both closed
regular languages. We generate languages that contain
(K) and
are contained inK. We remark that we can setK to be any regular
(nonempty) closed controllable sublanguage ofL, e.g., we can choose
K = L".

The controllability ofK allows us to assume the existence of a
supervisor such thatL(G; ) = K and (8 s 2 K)[� 2 (s) )
s� 2 L(G)]. (Hence(s) contains no “extra” events.) SinceK is
regular, letD = (X; �; �; x0) be a DFA such thatL(D) = K with
D accessible.D is accessible when for allx 2 X, there exists an
s 2 L(D) such that�(s; x0) = x. Furthermore, we chooseD so
that D refinesG [14]. In this case, the supervisor can be given
equivalently by adisable mapD: X ! 2� , where we define
(8x 2 X)[D(x) := (s): �(s; x0) = x].

We now extend the domains ofD and � to ease notation. The
disable mapD is extended in its domain over subsets ofX. We
define theextended disable map

D
: 2X ! 2� using the union of

D(x) over x 2 X.
For simplicity of notation we sometimes omit parentheses and write


D
P for 

D
(P ). Theextended transition functionis similarly defined

by assigning

(8J � ��; P � X)�(J; P )

:= fx 2 Xj(9 s 2 J; x0 2 P )x = �(s; x0)g: (3)

The partial information supervisor
M can now be equivalently given
by 
M(l) = 

D
�(M�1l; fx0g).

Our main theorem (Theorem 1) places a sufficient condition on
the events that a partial information supervisor disables, so that the
resulting closed-loop language contains
(K) and is contained in
K. A class of languages is generated by choosing such supervisors
that meet the sufficient condition. We show several ways of choosing
supervisors in the propositions following the theorem. The theorem
uses the definition of anunobserved reach function(denoted�̂) that
provides information about the states ofD (the DFA that generates
K) that can be reached via strings of the closed-loop language.
The unobserved reach function takes into account the event-disabling
actions of the partial information supervisor, and is used, along with
the disable map

D
, to determine those events that: 1) must be

disabled to ensure that the closed-loop language is a sublanguage
of K and 2) must not be disabled to ensure that the closed-loop
language contains
(K).

Theorem 1: Let M : ML(G) ! 2� be a partial information
supervisor. Let�̂(�) := fx0g and

(8 l� 2MK)�̂(l�) := �(M�1
� �� M (l); �̂+(l)) (4)

where �̂+(l) = �([�� � M (l)]�; �̂(l)). Then the following:

8 l 2ML(G; M )[
D
�̂+(l) � M (l) � 

D
�(��

� ; �̂(l))] (5)

implies that
(K) � L(G; M ) � K.
The proof of the theorem is given in Appendix I. The functions

�̂+ and �̂ have physical meaning related to the languageK and its
DFA D. As shown in Lemma A.1, if a strings is in the closed-
loop language (and (5) is satisfied) then the corresponding state
�(s; x0) is a member of�̂+(Ms). In fact (as demonstrated in the
proof) if the last event ofs is observable, then the corresponding
state�(s; x0) is a member of̂�(Ms). The functions�̂+ and �̂ take
into account the event-disabling action ofM , hence it is also true
that for l 2ML(G; M ), x 2 �̂+(l) implies that there exists a string
s 2 L(G; M ) such thatMs = l and �(s; x0) = x.

We now present a series of propositions that show how to select the
supervisorM so that the sufficient condition (5) is satisfied. In each

proposition we select the setM (l) for eachl 2ML(G; M ), and it
is assumed thatM (l0), wherel0 is a (strict) prefix ofl, has already
been selected. The following proposition uses an “initial guess” of
M (l) in order to compute one that satisfies (5).

Proposition 1.1: For eachl 2ML(G; M ), let �0l � �c. Let

�l =�0l \ D�([�� � �0l]
�; �̂(l)) (6)

M (l) = 
D
�([�� � �l]

�; �̂(l)): (7)

Then
(K) � L(G; M ) � K.
Proof: We have that (8 l 2 ML(G; M ))

D
�([�� �

�l]
�; �̂(l)) � 

D
�(��

� ; �̂(l)), so all that remains to be shown is
that 

D
�̂+(l) � M (l). It is clear from the definition of�l that

�l � �0l, hence
D
�([�� � �0l]

�; �̂(l)) � M (l). But it is also true
that �l � 

D
�([�� � �0l]

�; �̂(l)), hence�l � M (l). It follows by
the definition ofM and �̂+ that 

D
�̂+(l) � M (l). By Theorem 1,


(K) � L(G; M ) � K.
The initial guess�0l can (for eachl) be any subset of�c, and it can

be interpreted as a set of “preferred events” to disable. Although the
set M (l) can contain events not in�0l [and �0l can contain events
not in M (l)], these two sets share a common subset, namely�l.
The use of the set�0l to generateM (l) [as in (7)] guarantees the
right-hand containment in (5). To constructM (l) we require two
evaluations of the function� and two evaluations of the function

D
.

The computation of� takes in the worst casej��kXj steps, and the
computation of

D
takes at mostjXj steps. Hence the complexity of

the algorithm presented in Proposition 1.1 isO(j��kXj).
The following ways of selectingM (Propositions 1.2 and 1.3)

are special cases of Proposition 1.1; they show how some languages
proposed in the past can be generated. In both cases, the set�0l is
chosen independently ofl.

Proposition 1.2: For eachl 2 ML(G; M ), let �0l = �c in
Proposition 1.1. Then
(K) � L(G; M ) � K (by Proposition
1.1) andL(G; M ) = L(S3=G).

Proposition 1.3: For each l 2 ML(G; M ), let �0l = ; in
Proposition 1.1. Then
(K) � L(G; M ) � K (by Proposition
1.1) andL(G; M ) = L(SM=G).

The proofs of Propositions 1.2 and 1.3 are straightforward (see [9]
and [11]).

The algorithms of Propositions 1.2 and 1.3 will always generate
regular languages (M (l) depends only on the value of̂�(l), which
can only have a finite number of values). Proposition 1.1, on the other
hand, can be used to generate a nonregular language, since the value
of M (l) depends not only on̂�(l) but on the values of�0l, which
is chosen by the DES designer. It is possible for�0l to be chosen so
that the closed-loop language is nonregular.

The algorithms for computing the partial information supervisors in
Propositions 1.1–1.3 can be implemented online. If one has already
computedM (l), then the computation ofM (l�), where� is an
observed event, does not have to be performed until� is observed
by the supervisor.

The overall computational complexity of the supervisors presented
in Propositions 1.1–1.3 is measured by examining the number of com-
putations needed (in the worst case) each time an event is observed.
The computation requires that the values of�̂+(l), �̂(l�), andM (l�)
each be computed once. It is easy to show that the joint computation
of �̂+(l) and�̂(l�) requires at mostj�kXj computations. This is due
to the fact that in the computation of̂�+ unobservable events are
used, and in the computation of̂� observable events are used. Any
additional computations are made in the selection ofM (l�). If the
algorithm of Proposition 1.1 is used, then the overall complexity is
O(j�kXj).



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998 1633

Fig. 1. The DFA used in the examples of Section IV.

IV. EXAMPLES

Fig. 1 shows a DFAD = (X; �; �; x0), where the state set ofD
is X = f0; 1; � � � ; 9g, the event set is� = f�; �; �1; � � � ; �4g,
and the initial state isx0 = 0. The transition function� is de-
fined in the figure by the labeled arrows between states, for ex-
ample, �(�; 1) = 5. The DFA D generates the languageK =
�1��2 + �2��3 + �(�3 + ��2) + �4.

Assume that all events are controllable except�, so �c =
f�; �1; � � � ; �4g. Assume that the event� is observable and all other
events are unobservable, so�� = f�; �1; � � � ; �4g. Thus, for� 2 �,
M(�) = � if � = � andM(�) = � otherwise.

The events that are shown inside braces in Fig. 1 represent control-
lable events that extend strings ofK into the plant languageL(G),
but not intoK. For example, the strings�2�3 and��4 are assumed
to be inL(G) and not inK. The languageK is a (possibly supremal)
controllable sublanguage of a legal languageL � L(G). It can be
shown that
(K) = �� is a controllable and observable sublanguage
of K.

The events inside braces also define a (full-information) supervisor
 that satisfiesL(G; ) = K. For example,(�2) = f�3g and
(��) = ;. The corresponding disable mapD gives disabled event
sets as a function of the states inX, for example,D(6) = f�2g
andD(7) = ;. By extending the domains of� andD, we define
the extended disable map

D
and the extended transition function�.

We use Proposition 1.1 to generate three different closed-loop
(i.e., controllable and observable) sublanguages, all strictly containing

(K) and contained inK. To allow comparison among supervisors,
we denote them1M , 2M , and 3M .

Example 1: Let �0

l = �c for all l 2 ML(G; 1M):
By definition of closed-loop languages,� 2 L(G; 1M). Let

�0

� = �c. We have that�̂1(�) = f0g. Using (6) compute�� =

�0

� \ 
D
�([�� � �0

�]
�; �̂1(�)) = �c \ 

D
�(f�g�; f0g) = �c \


D
(f0; 3g) = f�4g. Compute1M (�) = 

D
�([�� � ��]

�; �̂1(�)) =

D
�([�� � f�4g]

�; f0g) = 
D
(f0; 1; 2; 3; 8g = f�1; �3; �4g.

Given the value of1M(�), we find that the sets of strings�� and
�2� are in the closed-loop language. Hence� 2 ML(G; 1M ).
Consequently,̂�1(�) = f6; 7g. Let �0

� = �c. By (6) we find that
�� = f�2g.

Compute 1M(�) = 
D
�([�� � ��]

�; �̂1(�)) = 
D
�([�� �

f�2g]
�; f6; 7g) = 

D
(f6; 7; 9g) = f�2g. Thus the string�2��3 is

also in the closed-loop language. ThusL(G; 1M) = ��+ �2��3.
By Proposition 1.2,L(G; 1M) = L(S3=G) [11].

Example 2: Let �0

l = ; for all l 2 ML(G; 2M).
Let �0

� = ;. Thus by (6)�� = ;. Proceeding with the computation
as in Example 1, we get2M(�) = 

D
(f0; 1; 2; 3; 4; 8g) =

f�1; �2; �3; �4g. Given2M (�), we find that the set of strings�� is
in the closed-loop language. Hence� 2ML(G; 2M). Consequently,
�̂2(�) = f7g.

Let �0

� = ;. Thus�� = ;. Proceeding as in Example 1, we get
2M(�) = 

D
(f7; 9g) = ;. Thus the string���2 is also in the

closed-loop language. ThusL(G; 2M) = ���2. By Proposition 1.3,
L(G; 2M) = L(SM=G).

Example 3: Let �0

l = f�3; �4g for all l 2 ML(G; 3M).
Let �0

� = f�3; �4g. We find from (6) that�� = f�3; �4g.
Proceeding as above, we get3M(�) = 

D
(f0; 1; 2; 3g) = f�3; �4g.

Given 3M (�), we find that the set of strings(�1 + � + �2)� is in
the closed-loop language. Hence� 2 ML(G; 3M). Consequently,
�̂3(�) = f5; 6; 7g.

Let �0

� = f�3; �4g. By (6) we find that�� = f�3g. We get
3M(�) = 

D
(f5; 6; 7; 9g) = f�2; �3g. No more strings are in the

closed-loop language. ThusL(G; 3M) = ��+ �2�+ �1�.
We have shown (by Examples 1 and 2) that the languages [11] and

L(SM=G) [9] can be generated, as well as other languages (Example
3). Other languages (viz., elements of the class) are generated by
choosing (for eachl) different values of�0

l in Proposition 1.1. Since
L(S3=G) [11] andL(SM=G) [9] are generated byparticular choices
of �0

l, the proposed supervisor synthesis algorithm is a generalization
of the two algorithms presented in [9] and [11]. Each of the three
generated languages contains strings not in the others. Consequently,
the generated languages are incomparable to each other in terms of
set inclusion. All three languages properly include
(K) and are
contained inK.

Similar classes of languages have been found in [8] and [13] using
controllable-event ordering. In [8], a class of languages that contain

(K) [and hence also containsupCCN(K)] was found. Unfor-
tunately, no online procedure has yet been developed for computing
supervisors for those languages. In [13] an online technique was used
to synthesize supervisors for a class of maximal sublanguages. The
synthesis algorithm is called in [13] the Variable Lookahead Policy
under Partial Observation (VLP-PO) algorithm. In addition, [13]
provides a scheme of event ordering that ensures that the generated
maximal language includessupCCN(K) and observes that another
event-ordering scheme exists to guarantee that the generated maximal
languages contain
(K). In this sense the languagessupCCN(K)
and 
(K) can be “maximized.” On the other hand, it also shows
that theredoes not existan event-ordering scheme which ensures
that the generated maximal language containsL(SM=G). Our class
of languages contains elements [such asL(SM=G)] not generated
(nor “maximized”) by the VLP-PO algorithm. Consequently, the class
of languages generated here is incomparable (in terms of language
inclusion) to the class generated by the VLP-PO algorithm.

V. CONCLUSION

A partial information supervisor that generates a class of closed
controllable and observable sublanguages of a closed and regular
legal language is presented. The supervisor can be implemented
online using a technique introduced by Heymann and Lin [9] where
computations of the disabled event set can be made after each event
observation. The generated languages contain a language proposed
independently by Heymann and Lin [9], Kumar [10], and Faet al. [8];
this language contains the supremal closed controllable and normal
sublanguage of the legal language. The generated class of languages is
incomparable (in terms of set inclusion) to both the class of maximal
languages generated by Hadj-Alouaneet al. [13] and the class of
languages generated in [8]. The (online) computational complexity
of our algorithms isO(mn), wherem is the number of plant events
andn is the number of states in the generator for the supremal closed
controllable sublanguage of the legal language.
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In some applications (e.g., plants with a large number of events that
can occur very frequently) it is possible that the algorithms presented
here are still too computationally intensive to be implemented online.
This topic requires future study.

APPENDIX A
PROOF OF THEOREM 1

We assume thatM is a partial information supervisor. The
corresponding functionŝ� and �̂+ are defined in the statement of
Theorem 1. All other assumptions are stated in the beginning of
Section III. The first lemma shows thatL(G; M ) is indeed a
sublanguage ofK.

Lemma A.1: Assume that (8 l 2 ML(G; M ))
D
�̂+(l) �

M (l). Then s 2 L(G; M ) implies thats 2 K and �(s; x0) 2
�+(Ms).

Proof: We use induction onjsj.
1) Basis: jsj = 0, sos = �. L(G; M ) is a closed-loop language,

so � 2 L(G; M ). By assumption, sinceK is nonempty and closed,
� 2 K. We also have that�(�; x0) = x0 2 fx0g = �(f�g; fx0g)

and therefore�(�; x0) 2 �([�� � M (�)]�; fx0g) = �̂+(�).
2) Induction: Assume that the lemma holds for alljsj � k; k > 0.

Let jsj = k. We shall first show thats� 2 L(G; M ) ) s� 2 K.
Let s� 2 L(G; M ). Then s� 2 L(G) and � 62 M (Ms). Let
l = Ms. By assumption,� 62 

D
�̂+(l). By the inductive hypothesis

� 62 D(�(s; x0)), hence� 62 (s). Since s� 2 L(G), s 2 K,
� 62 (s), and L(G; ) = K, we conclude thats� 2 K. To
show that�(s�; x0) 2 �̂+(M(s�)), two cases are considered, when
M� = � and whenM� 6= �. For both, we start using the inductive
hypothesis to get�(s�; x0) 2 �(f�g; f�(s; x0)g) � �(f�g; �̂+(l)).
It is then straightforward to show that in each case,�(f�g; �̂+(l)) �

�̂+(M(s�)). This completes the proof of the lemma.
Proof of Theorem 1:Assume that (5) holds. Due to Lemma A.1,

all that remains to be shown is that
(K) � L(G; M ). For this we
use induction onjsj. The basis steps = � is trivial, since both are
closed-loop languages.

Induction: Assume that for alls with jsj � k; k > 0, s 2

(K) ) s 2 L(G; M ). Let jsj = k. We want to show thats� 2

(K)) s� 2 L(G; M ). Let s� 2 
(K). Thens 2 
(K) � K,
s 2 L(G; M ), s� 2 L(G), and� 62 
M(Ms). Let l = Ms. From
the definition of
M , we have that
M(l) = 

D
�(M�1

K
l; fx0g). It

is straightforward to show that(8 s 2 L(G; M ))�(��� ; �̂(Ms)) �

�(M�1

K
Ms; fx0g). Consequently,� 62 �(��� ; �̂(l)) and therefore

� 62 M (l). Sinces 2 L(G; M ) ands� 2 L(G), we conclude that
s� 2 L(G; M ).
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On Damped Algebraic Riccati Equations

C.-Y. He, J. J. Hench, and V. Mehrmann

Abstract—In a recent paper, an algorithm was proposed which produces
dampening controllers based on damped algebraic Riccati equations
(DARE’s) derived from a periodic Hamiltonian system. The solution to
one of these DARE’s is symmetric and the other, skew-symmetric; both
of these solutions lead to a dampening feedback, i.e., a stable closed-loop
system for which the real parts of the eigenvalues are larger in modulus
than the imaginary parts.

In this paper, the authors extend these results to include a broader
class of damped algebraic Riccati equations which have Hermitian and
skew-Hermitian solutions and show that every convex combination of
these solutions produces a dampening feedback. This property can be
used to vary the feedback with two parameters and thus obtain more
flexibility in the controller design process.

Index Terms—Damped algebraic Riccati equations, dampening feed-
back, linear quadratic control, periodic Hamiltonian systems, periodic
Schur decomposition.

Manuscript received September 5, 1996. This work was supported in part
by the Engineering and Physical Sciences Research Council of the United
Kingdom under Grant GR/K 83618, by the Academy of Sciences of the
Czech Republic, by the Grant Agency of the Czech Republic under Contract
102/94/0294, and by the Deutsche Forschungsgemeinschaft Projekt Singul¨are
Steuerungsprobleme under Contract ME-790/7-1.

C.-Y. He is with the Department of Mathematics, University of Kansas,
Lawrence, KS 66045 USA.

J. J. Hench was with the Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, 128 08 Praha 8, Czech Republic.
He is now with the Guidance and Control Analysis Group, Jet Propulsion
Laboratory, Pasadena, CA 91109 USA (e-mail: John.Hench@jpl.nasa.gov).

V. Mehrmann is with the Technische Universität Chemnitz-Zwickau,
Fakultät für Mathematik, D-09107 Chemnitz, Germany.

Publisher Item Identifier S 0018-9286(98)07543-6.

0018–9286/98$10.00 1998 IEEE


